Main idea: Maximize width of separator zone → increases "margin of safety" for classification

What are basic SVM properties?

<table>
<thead>
<tr>
<th>Support Vector Machines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternatives:</td>
</tr>
<tr>
<td>Learning:</td>
</tr>
<tr>
<td>Advantages:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Disadvantages:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Boundary:</td>
</tr>
</tbody>
</table>

What’s the explanation of the code example?

Explanation: A Study Recommendation System with SVM

- NumPy array holds labeled training data (one row per user and one column per feature).
- Features: skill level in maths, language, and creativity.
- Labels: last column is recommended study field.
- 3D data → SVM separates data using 2D planes (the linear separator) rather than 1D lines.
- One-liner:
 1. Create model using constructor of scikit-learn’s svm.SVC class (SVC = support vector classification).
 2. Call fit function to perform training based on labeled training data.
- Results: call predict function on new observations
 - student_0 (skills maths=3, language=3, and creativity=6) → SVM predicts "art"
 - student_1 (maths=8, language=1, and creativity=1) → SVM predicts "computer science"
- Final output of one-liner:

```python
## Dependencies
from sklearn import svm
import numpy as np

## Data: student scores in (math, language, creativity)
## -- study field
X = np.array([[9, 5, 6, "computer science"],
              [10, 1, 2, "computer science"],
              [1, 8, 1, "literature"],
              [4, 9, 3, "literature"],
              [0, 1, 10, "art"],
              [5, 7, 9, "art"]])

## One-liner
svm = svm.SVC().fit(X[:, :-1], X[:, -1])

## Result & puzzle
student_0 = svm.predict([[3, 3, 6]])
print(student_0) # ['art']
student_1 = svm.predict([[8, 1, 1]])
print(student_1) # ['computer science']
```